3.358 \(\int \frac{x^8 \sqrt{c+d x^3}}{a+b x^3} \, dx\)

Optimal. Leaf size=125 \[ -\frac{2 a^2 \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{7/2}}+\frac{2 a^2 \sqrt{c+d x^3}}{3 b^3}-\frac{2 \left (c+d x^3\right )^{3/2} (a d+b c)}{9 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{5/2}}{15 b d^2} \]

[Out]

(2*a^2*Sqrt[c + d*x^3])/(3*b^3) - (2*(b*c + a*d)*(c + d*x^3)^(3/2))/(9*b^2*d^2)
+ (2*(c + d*x^3)^(5/2))/(15*b*d^2) - (2*a^2*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqr
t[c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(7/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.331587, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208 \[ -\frac{2 a^2 \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{7/2}}+\frac{2 a^2 \sqrt{c+d x^3}}{3 b^3}-\frac{2 \left (c+d x^3\right )^{3/2} (a d+b c)}{9 b^2 d^2}+\frac{2 \left (c+d x^3\right )^{5/2}}{15 b d^2} \]

Antiderivative was successfully verified.

[In]  Int[(x^8*Sqrt[c + d*x^3])/(a + b*x^3),x]

[Out]

(2*a^2*Sqrt[c + d*x^3])/(3*b^3) - (2*(b*c + a*d)*(c + d*x^3)^(3/2))/(9*b^2*d^2)
+ (2*(c + d*x^3)^(5/2))/(15*b*d^2) - (2*a^2*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqr
t[c + d*x^3])/Sqrt[b*c - a*d]])/(3*b^(7/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 37.3367, size = 114, normalized size = 0.91 \[ \frac{2 a^{2} \sqrt{c + d x^{3}}}{3 b^{3}} - \frac{2 a^{2} \sqrt{a d - b c} \operatorname{atan}{\left (\frac{\sqrt{b} \sqrt{c + d x^{3}}}{\sqrt{a d - b c}} \right )}}{3 b^{\frac{7}{2}}} + \frac{2 \left (c + d x^{3}\right )^{\frac{5}{2}}}{15 b d^{2}} - \frac{2 \left (c + d x^{3}\right )^{\frac{3}{2}} \left (a d + b c\right )}{9 b^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**8*(d*x**3+c)**(1/2)/(b*x**3+a),x)

[Out]

2*a**2*sqrt(c + d*x**3)/(3*b**3) - 2*a**2*sqrt(a*d - b*c)*atan(sqrt(b)*sqrt(c +
d*x**3)/sqrt(a*d - b*c))/(3*b**(7/2)) + 2*(c + d*x**3)**(5/2)/(15*b*d**2) - 2*(c
 + d*x**3)**(3/2)*(a*d + b*c)/(9*b**2*d**2)

_______________________________________________________________________________________

Mathematica [A]  time = 0.296563, size = 121, normalized size = 0.97 \[ \frac{2 \sqrt{c+d x^3} \left (15 a^2 d^2-5 a b d \left (c+d x^3\right )+b^2 \left (-2 c^2+c d x^3+3 d^2 x^6\right )\right )}{45 b^3 d^2}-\frac{2 a^2 \sqrt{b c-a d} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 b^{7/2}} \]

Antiderivative was successfully verified.

[In]  Integrate[(x^8*Sqrt[c + d*x^3])/(a + b*x^3),x]

[Out]

(2*Sqrt[c + d*x^3]*(15*a^2*d^2 - 5*a*b*d*(c + d*x^3) + b^2*(-2*c^2 + c*d*x^3 + 3
*d^2*x^6)))/(45*b^3*d^2) - (2*a^2*Sqrt[b*c - a*d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^
3])/Sqrt[b*c - a*d]])/(3*b^(7/2))

_______________________________________________________________________________________

Maple [C]  time = 0.082, size = 514, normalized size = 4.1 \[{\frac{1}{{b}^{2}} \left ( b \left ({\frac{2\,{x}^{6}}{15}\sqrt{d{x}^{3}+c}}+{\frac{2\,c{x}^{3}}{45\,d}\sqrt{d{x}^{3}+c}}-{\frac{4\,{c}^{2}}{45\,{d}^{2}}\sqrt{d{x}^{3}+c}} \right ) -{\frac{2\,a}{9\,d} \left ( d{x}^{3}+c \right ) ^{{\frac{3}{2}}}} \right ) }+{\frac{{a}^{2}}{{b}^{2}} \left ({\frac{2}{3\,b}\sqrt{d{x}^{3}+c}}+{\frac{{\frac{i}{3}}\sqrt{2}}{b{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{1\sqrt [3]{-c{d}^{2}}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-c{d}^{2}}} \right ) \left ( -3\,\sqrt [3]{-c{d}^{2}}+i\sqrt{3}\sqrt [3]{-c{d}^{2}} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}} \left ( i\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,\sqrt{3}d+2\,{{\it \_alpha}}^{2}{d}^{2}-i\sqrt{3} \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}-\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,d- \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{id\sqrt{3} \left ( x+{\frac{1}{2\,d}\sqrt [3]{-c{d}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}},{\frac{b}{2\, \left ( ad-bc \right ) d} \left ( 2\,i{{\it \_alpha}}^{2}\sqrt [3]{-c{d}^{2}}\sqrt{3}d-i{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}\sqrt{3}+i\sqrt{3}cd-3\,{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{2/3}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}} \left ( -{\frac{3}{2\,d}\sqrt [3]{-c{d}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^8*(d*x^3+c)^(1/2)/(b*x^3+a),x)

[Out]

1/b^2*(b*(2/15*x^6*(d*x^3+c)^(1/2)+2/45*c/d*x^3*(d*x^3+c)^(1/2)-4/45*c^2*(d*x^3+
c)^(1/2)/d^2)-2/9*a/d*(d*x^3+c)^(3/2))+a^2/b^2*(2/3*(d*x^3+c)^(1/2)/b+1/3*I/b/d^
2*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^
2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*
3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*
d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1
/2)*d+2*_alpha^2*d^2-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(
2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)
^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*_alpha^2*(-c*d^2)^(1/3)*3^(
1/2)*d-I*_alpha*(-c*d^2)^(2/3)*3^(1/2)+I*3^(1/2)*c*d-3*_alpha*(-c*d^2)^(2/3)-3*c
*d)/(a*d-b*c),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d
*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^3 + c)*x^8/(b*x^3 + a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.2232, size = 1, normalized size = 0.01 \[ \left [\frac{15 \, a^{2} d^{2} \sqrt{\frac{b c - a d}{b}} \log \left (\frac{b d x^{3} + 2 \, b c - a d - 2 \, \sqrt{d x^{3} + c} b \sqrt{\frac{b c - a d}{b}}}{b x^{3} + a}\right ) + 2 \,{\left (3 \, b^{2} d^{2} x^{6} - 2 \, b^{2} c^{2} - 5 \, a b c d + 15 \, a^{2} d^{2} +{\left (b^{2} c d - 5 \, a b d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}}{45 \, b^{3} d^{2}}, -\frac{2 \,{\left (15 \, a^{2} d^{2} \sqrt{-\frac{b c - a d}{b}} \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-\frac{b c - a d}{b}}}\right ) -{\left (3 \, b^{2} d^{2} x^{6} - 2 \, b^{2} c^{2} - 5 \, a b c d + 15 \, a^{2} d^{2} +{\left (b^{2} c d - 5 \, a b d^{2}\right )} x^{3}\right )} \sqrt{d x^{3} + c}\right )}}{45 \, b^{3} d^{2}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^3 + c)*x^8/(b*x^3 + a),x, algorithm="fricas")

[Out]

[1/45*(15*a^2*d^2*sqrt((b*c - a*d)/b)*log((b*d*x^3 + 2*b*c - a*d - 2*sqrt(d*x^3
+ c)*b*sqrt((b*c - a*d)/b))/(b*x^3 + a)) + 2*(3*b^2*d^2*x^6 - 2*b^2*c^2 - 5*a*b*
c*d + 15*a^2*d^2 + (b^2*c*d - 5*a*b*d^2)*x^3)*sqrt(d*x^3 + c))/(b^3*d^2), -2/45*
(15*a^2*d^2*sqrt(-(b*c - a*d)/b)*arctan(sqrt(d*x^3 + c)/sqrt(-(b*c - a*d)/b)) -
(3*b^2*d^2*x^6 - 2*b^2*c^2 - 5*a*b*c*d + 15*a^2*d^2 + (b^2*c*d - 5*a*b*d^2)*x^3)
*sqrt(d*x^3 + c))/(b^3*d^2)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{8} \sqrt{c + d x^{3}}}{a + b x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**8*(d*x**3+c)**(1/2)/(b*x**3+a),x)

[Out]

Integral(x**8*sqrt(c + d*x**3)/(a + b*x**3), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.217309, size = 188, normalized size = 1.5 \[ \frac{2 \,{\left (a^{2} b c - a^{3} d\right )} \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{3 \, \sqrt{-b^{2} c + a b d} b^{3}} + \frac{2 \,{\left (3 \,{\left (d x^{3} + c\right )}^{\frac{5}{2}} b^{4} d^{8} - 5 \,{\left (d x^{3} + c\right )}^{\frac{3}{2}} b^{4} c d^{8} - 5 \,{\left (d x^{3} + c\right )}^{\frac{3}{2}} a b^{3} d^{9} + 15 \, \sqrt{d x^{3} + c} a^{2} b^{2} d^{10}\right )}}{45 \, b^{5} d^{10}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(d*x^3 + c)*x^8/(b*x^3 + a),x, algorithm="giac")

[Out]

2/3*(a^2*b*c - a^3*d)*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*
c + a*b*d)*b^3) + 2/45*(3*(d*x^3 + c)^(5/2)*b^4*d^8 - 5*(d*x^3 + c)^(3/2)*b^4*c*
d^8 - 5*(d*x^3 + c)^(3/2)*a*b^3*d^9 + 15*sqrt(d*x^3 + c)*a^2*b^2*d^10)/(b^5*d^10
)